Flux Norm Approach to Homogenization Problems with Non-separated Scales

نویسندگان

  • Leonid Berlyand
  • Houman Owhadi
چکیده

We consider divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general case of arbitrary bounded coefficients. For such problems we introduce explicit finite dimensional approximations of solutions with controlled error estimates, which we refer to as homogenization approximations. In particular, this approach allows one to analyze a given medium directly without introducing the mathematical concept of an ǫ family of media as in classical periodic homogenization. We define the flux norm as the L 2 norm of the potential part of the fluxes of solutions, which is equivalent to the usual H 1-norm. We show that in the flux norm, the error associated with approximating, in a properly defined finite-dimensional space, the set of solutions of the aforementioned PDEs with rough coefficients is equal to the error associated with approximating the set of solutions of the same type of PDEs with smooth coefficients in a standard space (e.g., piecewise polynomial). We refer to this property as the transfer property. A simple application of this property is the construction of finite dimensional approximation spaces with errors independent of the regularity and contrast of the coefficients and with optimal and explicit convergence rates. This transfer property also provides an alternative to the global harmonic change of coordinates for the homogenization of elliptic operators that can be extended to elasticity equations. The proofs of these homogenization results are based on a new class of elliptic inequalities which play the same role in our approach as the div-curl lemma in classical homogenization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flux Norm Approach to Homogenization Problems with Non-separated Scales Leonid Berlyand and Houman Owhadi

We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L∞(Ω), Ω ⊂ R) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most gener...

متن کامل

2 00 9 Flux norm approach to homogenization problems with non - separated scales

We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most g...

متن کامل

. A P ] 1 3 Ju l 2 00 9 Flux norm approach to homogenization problems with non - separated scales

We consider divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general ...

متن کامل

Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast

Weconsider linear divergence-form scalar elliptic equations and vectorial equations for elasticitywith rough (L∞( ), ⊂ Rd ) coefficientsa(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general ...

متن کامل

Two-sided estimates of the modeling error for elliptic homogenization problems

In this paper, we derive new two-sided estimates of modeling errors for linear elliptic boundary value problems with periodic coefficients solved by homogenization method. Our approach is based on the concept of functional a posteriori error estimation. The estimates are obtained for the energy norm and use solely the global flux of the non-oscillatory solution of the homogenized model and solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009